
Efficient Declustering of Non-Uniform
Multidimensional Data using Shifted Hilbert

Curves

Hak-Cheol Kim1, Mario A. Lopez2, Scott T. Leutenegger2, and Ki-Joune Li1

1 School of Electrical and Computer Engineering, Pusan National University
Jangjeon, Kumjeong, Pusan, 609-735, Korea

{hkckim, lik}@pusan.ac.kr,
2 Department of Computer Science, University of Denver, 2360 S. Gaylord St.,

Denver, CO 80208-0183, U.S.A
{mlopez,leut}@cs.du.edu

Abstract. Data declustering speeds up large data set retrieval by par-
titioning the data across multiple disks or sites and performing retrievals
in parallel. Performance is determined by how the data is broken into
”buckets” and how the buckets are assigned to disks. While some work
has been done for declustering uniformly distributed low dimensional
data, little work has been done on declustering non-uniform high dimen-
sional data. To decluster non-uniform data, a distribution sensitive buck-
eting algorithm is crucial for achieving good performance. In this paper
we propose a simple and efficient data distribution sensitive bucketing al-
gorithm. Our method employs a method based on shifted Hilbert curves
to adapt to the underlying data distribution. Our proposed declustering
algorithm gives good performance compared with previous work which
have mostly focused on bucket-to-disk allocation scheme. Our experi-
mental results show that the proposed declustering algorithm achieves
a performance improvement up to 5 times relative to the two leading
algorithms.

Keywords: Declustering, Parallel I/O, Non-uniform Multidimensional data

1 Introduction

Modern scientific and business applications such as geographic information sys-
tems(GISs), data warehouse, information retrieval systems, remote-sensing data
bases, etc., store and handle a massive amounts of high dimensional data. While
storing tera bytes of data is now possible, time-efficient retrieval methods re-
main a crucial challenge. One promising approach is to distribute or stripe the
data across multiple parallel disks, thus speeding up retrievals. How to distribute
data so as to minimize response time of queries is referred to as the declustering
problem. When we distribute data across multiple disks and assume the disks
can be accessed independently, the response time of a query is proportional to
the maximum number of disk blocks retrieved from any one of the disks.

2

Most previous work has focused on evenly distributing the data blocks across
the disks, and assumes uniformly distribute data that is partitioned into disjoint
regular tiles[4, 5, 10, 7, 6, 15, 2, 3].

Although some of the previous algorithms have been show to be optimal
under the uniform data assumption, most real data is far from uniformly dis-
tributed. Uniformly tiling non-uniform data results in low storage utilization.
Furthermore, even for uniform data, tiling results in more tiles than needed
and becomes worse as dimension increases. Therefore, most of the tiling and
mapping function based declustering schemes show a drop in efficiency for high
dimensional data, whether it is uniformly distributed or not. The phenomena is
demonstrated in section 3.

Some initial work has done on how to decluster non-uniform data [8, 12, 13]
focusing on the bucket-to-disk problem. While most previous work allocates a
disk number based on an interval number of each dimension, these algorithms
can be applied to an arbitrary shaped data block by graph theoretic approaches.
Although the methods have improved allocation methods, the bucketing meth-
ods are lacking [8, 13] or use the Gridfile [14] method resulting in poor space
utilization in high dimensions.

Most of the previous work, whether aimed at uniform data or not, focused
on the bucket-to-disk allocation scheme and ignored the effect of a bucketing
method on the performance of a declustering algorithm. Our results show that
performance can be improved by reducing the number of data blocks to be
retrieved, which is mainly affected by a bucketing algorithm, and hence bucketing
must be considered as well as allocation.

In this paper, we propose an efficient and simple bucketing algorithm for
high-dimensional non-uniform or uniform data. By using multiple orderings of
the data set using the orderings from a set of shifted Hilbert curve we build an
approximate nearest neighbor graph. Our experimental results, using real skewed
and high-dimensional data sets, show that our proposed declustering algorithm
significantly improves performance relative to previous work.

The rest of this paper is organized as follows: In the next section, we present
preliminaries of the declustering problem and show related work and our moti-
vations in section 3. In section 4, we propose an approximate nearest neighbor
graph and present our proposed declustering algorithm in section 5. We present
experimental results in section 6 and conclude this paper in section 7.

2 Preliminaries

In this section, we present assumptions and definitions relevant to the declus-
tering problem. To decluster data across multiple disks two steps are needed: 1)
grouping the data into buckets, and 2) allocating the buckets to disks.

Formally, we define bucketing of data set P for a given disk blocking factor
Bfmax as follows:

3

Definition 1. Bucketing of Data
A bucketing of data π is a collection of groups Gπ

1 , Gπ
2 , · · · , Gπ

Npage
where | Gπ

i |≤
Bfmax,

⋃Npage

i=1 Gπ
i = P and Gπ

i ∩Gπ
j = ∅ for i 6= j ¤

Based on this definition, we view a declustering algorithm as the following two
steps for given M disks.

– step 1. Bucketing: {v | v ∈ P} → { Gπ
1 , Gπ

2 , · · · , Gπ
Npage

}
– step 2. Allocation: { Gπ

1 , Gπ
2 , · · · , Gπ

Npage
} → {0, 1, 2, · · ·, M -1}

When we distribute data across multiple disks, the response time of a query q
is defined as the maximum number of disk blocks retrieved from any one of the
disks. We formally define response time of a declustering scheme as follows:

Definition 2. Response time of a declustering algorithm
For a given query q, the number of disk accesses DA(q), i.e, response time of a
declustering algorithm, is determined as follows.

DA(q) = maxM
i=1 DAi(q)

where DAi(q) is the i-th disk accesses to process a query q ¤
Definition 2 means that a good declustering algorithm should access the same
number of data blocks on any disk to process a query. Based on this notion, we
define a strictly optimal declustering algorithm as follows:

Definition 3. Strictly optimal declustering algorithm
A declustering algorithm is strictly optimal if

∀q, DA(q) = dNblock(q)
M e

where Nblock(q) is the number of data blocks touched by a query q

Achieving the optimal response time in definition 3, for all queries without re-
strictions, has been show to be NP -complete[1]. Hence, any declustering al-
gorithm has an additive error ε(> 0) and its actual response time is given as
follows:

DA(q) = dNblock(q)
M

e+ ε (1)

Three factors affect the performance of a declustering algorithm in equation 1
: Nblock(q), the number data blocks touched by a query q, M, the number of
parallel disks, and ε, an additive error determined by the allocation scheme.
Since M is a constant, Nblock(q) and ε determine declustering performance.

3 Related Work and Motivations

3.1 Related Work

Several declustering schemes have been proposed to speed up retrieval for range
queries or partial match queries from large data sets. We can classify them into
two categories:

4

– Allocation Oriented This group of algorithms assume the data is first
tiled into uniform region-sized buckets by splitting each dimension into dis-
joint intervals. Then, various bucket-to-disk allocation functions were pro-
posed. The algorithms assume a uniform data distribution. Most previous
work belongs to this category and includes Disk Modulo(DM)[5], Field-
wise Xor(FX)[10], Error-Correcting Code(ECC)[7], Hilbert Curve Alloca-
tion Method(HCAM)[6], Cyclic Allocation Scheme[15], Golden-Ratio Se-
quence(GRS)[3], Coloring Scheme[2], and Discrepancy theory based declus-
tering scheme[4].

– Bucket Formation Oriented Using Graph Theory Regular grid-shaped
partitions (buckets) lead to low storage utilization with non-uniform data
or even with uniform data in high dimensional space. A few previous algo-
rithms have started to address this problem [8, 12, 13]. These works model
declustering problem as a kind of graph. Their algorithm treats data items
or data pages as a node of a graph and represents edge as distance between
nodes or similarity between them.

3.2 Motivations

There are two factors in equation 1 that determine response time. The first
factor, Nblock(q), is the number of data blocks touched by a query and it is
mainly determined by a bucketing scheme. An additive error ε is the second
factor and is determined by the bucket-to-disk allocation method.

Again, most previous work has focused on minimizing the additive error
ε [4, 5, 10, 7, 6, 15, 2, 3]. Although these algorithms achieve good performance by
applying an efficient disk allocation scheme, we can further improve performance
by reducing Nblock(q) in equation 1.

When the data are non-uniformly distributed, Nblock(q) often increases con-
siderably and the resultant performance degradation increases with data di-
mension. In addition to this weakness, regular grid-shaped partitioning schemes
result in low storage utilization even with uniform data, especially in high di-
mensional space.

Thus, a good bucketing method as the first step of a declustering algorithm
is necessary to improve declustering performance, especially with non-uniform
data in high dimensional space. This is the main motivation of our work.

Let us discuss about Nblock(q) in more detail. Suppose that s(q) is the selec-
tivity of a query q. Then

Nblock(q) = s(q) ·Ntotal (2)

where Ntotal means the total number of blocks occupied by data objects. From
this equation, we see that Nblock(q) is determined by both the total number of
blocks, in other words the storage utilization, and selectivity. Since the selectivity
s(q) is given by a query, we will discuss only on storage utilization in the rest
of this subsection. For high dimensional data, it is sufficient to perform binary
partition along each dimension. Let Bfmax be the maximum disk blocking factor

5

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 6 12 18 24 30 36 42 48 54 60
st

or
ag

e
ut

ili
za

tio
n(

%
)

dimension

Fig. 1. Example of storage utilization for uniform data by simple tiling

and suppose we have decomposed a high dimensional data set with binary par-
tition along p different dimensions thus resulting in 2p tiles. If some of the tiles
contain more than Bfmax objects we need to partition again along the (p + 1)th

dimension and this produces 2p more tiles, i.e. a doubling of required disk space.
These newly created tiles may cause a considerable drop of storage utilization
for the following two reasons:

– case 1: uniform distribution
25 percent of this newly allocated space is likely wasteful for uniformly dis-
tributed data. Assume the (p + 1)th split results in each tile having Bfmax

or fewer entries. If we assume before the last partition each tile had between
Bfmax and 2 · Bfmax entries, then after the split each tile has between
0.5 · Bfmax and Bfmax entries, i.e. one fourth of the total space is being
wasted. Furthermore, it is likely that before the split some of the tiles had
less than Bfmax entries hence utilization would be even lower. Figure 1
shows this drop of storage utilization for uniform data. In this example, we
assume 106 data items whose dimension is varied from 2 to 60 and page size
is 4KByte. Although the performance of tiling uniform data depends on the
number of data items and its dimension for the given disk page size, actual
storage utilization is between 53% and 100%.

– case 2: non-uniform distribution
While popt = (dlog2

N
Bfmax

e) decompositions may be enough under uniform
distribution for N objects, we need more decompositions than popt if the
objects are not uniformly distributed. If we need p′(> dlog2

N
Bfmax

e) decom-
positions, the ratio of the storage utilization for non-uniform distribution
over uniform distribution is 2dlog2

N
Bfmax

e−p′ and results in a significant drop
of storage utilization. Experimental results show that actual storage utiliza-
tion for real high dimensional data by tiling algorithm is between 3.5% and
6.7%.

Besides the above shortcomings, a large query size may require all data blocks
be accessed when using a tiling algorithm. If we store N uniformly distributed

6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60

qu
er

y
si

de
 le

ng
th

dimension

s(q)=1%
s(q)=0.1%

s(q)=0.01%

Fig. 2. Selectivity vs query side length

objects whose dimension is higher than log2 d N
Bfmax

e, it is sufficient to perform
binary partition along some of dimension. In this case, a query whose side length
is greater than 0.5 may overlap all of the tiles.

The size of query region becomes extremely large as increases the dimension-
ality. For example, suppose that a range query, whose selectivity is 0.1%, is given
in 10-dimensional space. Then the side length of this query should be more than
0.5. It means that this query touches every tile, and Nblock(q) = Ntotal for bi-
nary decomposition, which gives the worst performance of declustering. Figure 2
shows the side length of a query versus selectivity s(q) as varies dimension.

Due to above shortcomings, the number of data blocks touched by a query
Nblock(q) unnecessarily grows for high dimensional data and this results in an
overall low declustering performance with tiling scheme. To improve storage
utilization and reduce the number of blocks touched by a query, we need a
well designed bucketing algorithm producing a small number of data blocks and
minimizing dead space within a bucket regardless of data distribution. We should
employ a more elaborate bucketing method respecting the distribution of data
rather than a simple decomposition of tiling scheme. In this paper, we propose a
bucketing and declustering method for high dimensional data to increase storage
utilization and reduce the number of blocks touched by a query region even for
non-uniform high dimensional data.

4 Approximate Nearest Neighbor Graph by Hilbert Lists

In the previous section, we showed that one must take storage utilization and
data distribution into account in order to improve the performance of a declus-
tering algorithm. One approach is to adapt to the data distribution or spatial
proximity between objects and we employed Delaunay Triangulation algorithm
in [9]. However, it cannot be applied to high-dimensional data due to the algo-
rithmic limitation of Delaunay triangulation. In this paper, we replace it with

7

a

 b

(a) Before shifting objects

a’

b’

(b) After shifting objects

Fig. 3. An effect of shifting data objects

an approximate nearest neighbor graph based on multiple instances of the input
points sorted by their position along a shifted Hilbert curve.

This structure, first proposed in [11], has been used to also encode informa-
tion on spatial proximity, but is easy and efficient to compute nearest-neighbor
graph for high dimensional data. As shown by Figure 3-(a), a space filling curve
does not guarantee, in general, that a nearest neighbor is a neighbor in the
Hilbert sorted list. The two objects a and b constituting the closest pair in Fig-
ure 3-(a), are not neighbors along the curve. We improve the information about
spatial proximity if we create the second instance of the input where all of the
data objects have been shifted by the vector (1, 1), as illustrated in Figure 3-
(b). After shifting by (1,1), a′ and b′ become neighbors and the detection of the
closest pair can be guaranteed.

Formally, for d -dimensional point set P = {p1, . . . , pn}, we define shifted
Hilbert lists as follows:

Definition 4. Hilbert lists
Let {Hj , j = 0, . . . , d} be the d + 1 Hilbert ordered lists of points of P such
that Hj [i] = {pi + v(j)}, i = 1, . . . , n and Hj [i] <h Hj [i + 1], where v(j) =
(j/(d + 1), . . . , j/(d + 1)) ∈ Rd.

For more details as well as the mathematical justification for the use of shift
vector v(j), see [11]. Once the lists have been built, an approximate nearest
neighbor for a given point can be obtained by examining k predecessors and
successors of the (shifted) given point in each of the Hilbert ordered lists. The
more points we examine on either side of the point the more accurate our answer
is, but even with k = 1 the difference between the approximation and the true
answer is bounded by a constant factor that depends on d.

Based on Hilbert lists, we formally define an approximate nearest neighbor
graph for the given point set P = {p1, . . . , pn} in [0, 1)d as follows:

Definition 5. Approximate Nearest Neighbor Graph Gk
H

Gk
H(P) = (V, E), where V = P and for every pair of points p, q ∈ P , (p, q) ∈ E

iff p = Hj [i] and q = Hj [h] for some 1 ≤ i ≤ n, 0 ≤ j ≤ d and |i− h| ≤ k.

8

An approximate nearest neighbor graph Gk
H(V,E) contains one vertex for

each data point and an edge between every pair of points that are at most k
positions apart in at least one of the (d+1) Hilbert sorted lists. The proposed
nearest neighbor graph has at most k(d + 1)n edges for d -dimensional n points
when we examine k neighbor objects along each sorted list. So its maximum
space requirement for building the graph grows linearly according to dimension
of data. Experimental results show that the number of edges is around 70% of
the expected upper-bound limit. The building time of a nearest neighbor graph
is O((d + 1) · n log n) for n objects.

There are two factors that can affect the quality of the nearest neighbor
graph. We are more likely to find an exact nearest neighbor object by shifting
data several times and by examining more neighbors on every shifted list. How-
ever, experimental results show that the number of neighbors to be examined
has a trivial effect on the performance of the proposed declustering algorithm
while we can improve the performance by shifting data several times.

In the next section, we present our proposed declustering algorithm using an
approximate nearest neighbor graph Gk

H .

5 DC-SH(Declustering Clusters by Shifted Hilbert lists):
Algorithm Description

Once we detect spatial proximity information between data as described in the
previous section, we can organize objects by the unit of bucket in a way that
reduces dead space and achieves high storage utilization. Our proposed declus-
tering algorithm consists of the following five steps:

– step 1. Build an approximate nearest neighbor graph Gk
H

– step 2. Find an initial bucket set
– step 3. Split overfilled buckets
– step 4. Assign a disk number
– step 5. Place buckets onto physical disk page

In the rest of this section, we present each step in more detail.

Step 1: Build an approximate nearest neighbor graph Gk
H

First, we build an approximate nearest neighbor graph for input points as ex-
plained in the previous section. Unless commented, we examined only one neigh-
bor object and use the full set of d+1 shifted curves in order to find more accurate
proximity information.

Step 2: Find an initial bucket set
After building an approximate nearest neighbor graph Gk

H , we obtain an initial
bucket set by cutting edges whose distance is greater than a predefined threshold
value as shown in Figure 4-(c). The threshold value determines total number of
buckets and their size. A small value may produce many buckets and vice versa.
Determining a proper threshold value may affect goodness of resultant bucket

9

set, but we leave this issue for future research. In this work, we iteratively ap-
plied a threshold value and selected the best among them.

Step 3: Split overfilled buckets
After obtaining an initial bucket set, there may be buckets whose size is too large
to fit on one disk page. As queries are likely to be centralized around data areas,
there is a good chance that most of the objects within an overfilled bucket can
be accessed at the same time. Therefore, an overfilled bucket should be split into
several disk blocks for parallel disk I/0. For this, we sort data objects within an
overfilled bucket by Hilbert order and pack them by the unit of maximum disk
blocking factor.

Step 4: Assign a disk number
After splitting overfilled buckets into several small buckets, all of the buckets can
be stored on one physical disk page. At the allocation step, those buckets that
are likely to be touched by a query should be distributed onto different physical
disks for parallel access. To do this, we sort buckets by the Hilbert order of their
center point of bounding cube and assign a disk number in round robin fashion.
We may apply alternative disk allocation methods, for example max cut graph
partitioning scheme used in [12] by assigning buckets as nodes of a graph as long
as similarity measure between buckets is given.

Step 5: Place buckets onto physical disk page
As we see in Figure 4-(e), there are buckets whose size is smaller than the phys-
ical disk page size. If we store only one small bucket onto a physical disk page,
most of the rest space within that page is wasteful and it results in poor declus-
tering performance. For high storage utilization, we sort buckets allocated the
same disk number by Hilbert order of their center point of bounding cube and
place consecutive buckets whose cumulative sum of size is within maximum disk
blocking factor onto the same physical page within that disk.

Figure 4 illustrates five steps of our algorithm with small examples.

6 Experiments

We have conducted several experiments to show the performance of the proposed
declustering algorithm.

We base our experimental studies on three real high-dimensional data sets:
ColorMoments, CoocTexture and ColorHistogram, whose dimension are 9, 16
and 32 respectively. These data sets are extracted from feature vectors of Corel
images, which are available at http://ics.uci.edu/databases/CorelFeatures. For the
reason of simplicity, we normalized these data sets in [0, 1)d. For query sets
we generated various sized range queries to show the effect of query size on
declustering performance. We vary query size from a point query to a hyper-
square region with side length of 0.9 on each dimension. Region queries fully
specify the range on each dimension relevant to the data set use. The lower left

10

(a) initial data set

(d) split overfilled buckets

(b) build a NN graph

1

2

3

1

2

4

(e) assign a disk number

overfilled bucket

(c) find initial buckets

(1,1)

(1,2)

(2,1)

(2,2)

(4,1)

(3,1)

(f) place buckets onto page

Fig. 4. An example of the proposed declustering algorithm when Bfmax is 4(In this
example, (x, y) in figure (f) means (disk number, block number within a disk))

hand corner of queries is uniformly distributed over the unit hyper-cube thus
allowing parts of large queries to extend beyond the data space returning no
data for that portion of the query. We assume a physical disk page size as 4
KByte.

6.1 Performance Test on Bucketing Scheme(Nblock(q))

In section 3.2, we stated that declustering performance for non-uniform high di-
mensional data is mainly determined by Nblock(q) in equation 1, which means the
number of blocks touched by a query q. For this reason, we investigate Nblock(q)
by experiments with real data sets. Hence, we compare the two previous buck-
eting algorithms with the bucketing step of our DC-SH algorithm. We compare
our method with ’tiling’, which is a simple uniform tiling of the data space, and
’gridfile’, whose bucketing is determined by the buckets resulting from the cre-
ation of a gridfile when inserting one data item at a time [14]. For this section
the bucket-to-disk allocation is not relevant and hence not considered.

In figure 5 we plot the average number of data blocks retrieved versus query
size for the three data sets. Query region side length is varied from 0.1 to 0.9.

We see that the number of data blocks retrieved by the tiling algorithm
increases rapidly with query size. This result is due to low storage utilization
of a tiling algorithm as illustrated in section 3. The Gridfile based organizing
scheme, requires fewer data blocks than tiling because it adapts better to the
data distribution and merges under-filled blocks with neighboring grid cells.
However, the Gridfile method still retrieves significantly more data blocks than
our method.

11

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

N
bl

oc
k(

q)

query side length

ColorMoments(D=9)

DC-SH
Gridfile

Tiling

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

N
bl

oc
k(

q)

query side length

CoocTexture(D=16)

DC-SH
Gridfile

Tiling

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

N
bl

oc
k(

q)

query side length

ColorHistogram(D=32)

DC-SH
Gridfile

Tiling

Fig. 5. Average number of data blocks touched by a query vs query size

 10

 20

 30

 40

 50

 60

 8 16 24 32 40 48 56 64

av
er

ag
e

re
sp

on
se

 ti
m

e

number of disks

ColorMoments(D=9)

DC-SH
GRAPH

GRS

 50

 100

 150

 200

 250

 8 16 24 32 40 48 56 64

av
er

ag
e

re
sp

on
se

 ti
m

e

number of disks

CoocTexture(D=16)

DC-SH
GRAPH

GRS

 50

 100

 150

 200

 250

 300

 350

 8 16 24 32 40 48 56 64

av
er

ag
e

re
sp

on
se

 ti
m

e

number of disks

ColorHistogram(D=32)

DC-SH
GRAPH

GRS

Fig. 6. Response time vs number of disks: query side length is 0.3

These results show that for the data sets used, our proposed approximate
nearest neighbor graph method is better able to adapt to the data distribution
than both of the previous methods.

6.2 Performance Test on Response Time(maxM
i=1 DAi(q))

In this section we compare our new method with both GRAPH[12] and GRS[3].
The GRS algorithm first create buckets by using tiling whereas Graph using the
gridfile bucketing method. They also differ in how they allocate the buckets to
disk as specified in the original papers.

When storing data blocks onto a physical disk page, we pack them within
that disk for high storage utilization. For this, we sort data blocks assigned the
same disk id according to Hilbert value of center point of bounding cube and
place consecutive blocks whose sum of data is within maximum disk blocking
factor into the same page. We compare these algorithms to DC-SH.

We use our comparison metric response time as defined in definition 2. In
Figure 6 we plot the response time versus the number of disks for each data set,
and in Figure 7 we plot response time versus query size for each data set.

In all cases, the DC-SH algorithm has a smaller response time, ranging from
1.5 to 5 times improvement relative to the other algorithms. In general, the GRS
algorithm does not perform as well as GRAPH, presumably due to the inferior
bucket utilization of GRS relative to GRAPH. Note, again, we have improved
the utilization of GRS and GRAPH by packing under-filled buckets into the

12

 20

 40

 60

 80

 100

 120

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

re
sp

on
se

 ti
m

e

query side length

ColorMoments(D=9)

DC-SH
GRAPH

GRS

 20

 40

 60

 80

 100

 120

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

re
sp

on
se

 ti
m

e

query side length

CoocTexture(D=16)

DC-SH
GRAPH

GRS

 40
 80

 120
 160
 200
 240
 280
 320
 360
 400
 440

 0.1 0.3 0.5 0.7 0.9

av
er

ag
e

re
sp

on
se

 ti
m

e

query side length

ColorHistogram(D=32)

DC-SH
GRAPH

GRS

Fig. 7. Response time vs query side length: number of disks is 32

 1

 2

 8 16 24 32 40 48 56 64

er
ro

r
ra

tio

number of disks

ColorMoments

query side length: 0.1
query side length: 0.3
query side length: 0.5
query side length: 0.7

 1

 2

 8 16 24 32 40 48 56 64

er
ro

r
ra

tio

number of disks

CoocTexture

query side length: 0.1
query side length: 0.3
query side length: 0.5
query side length: 0.7

 1

 2

 8 16 24 32 40 48 56 64

er
ro

r
ra

tio

number of disks

ColorHistogram

query side length: 0.1
query side length: 0.3
query side length: 0.5
query side length: 0.7

Fig. 8. Actual/optimal response time ratio vs query size

same physical page contingent on Hilbert ordering of the buckets as specified
above.

6.3 Performance Study of our Bucket-To-Disk Allocation Scheme

In this section we isolate and quantify the quality of our bucket-to-disk allocation
scheme. For a fixed bucketing, and hence a fixed Nblock(q), a perfect allocation
scheme would result in the strict optimal response time as found in definition 3.
Thus, to determine the quality of our allocation scheme we plot the ratio of
the measured response time over the optimal response time in Figure 8. We
plot results for each data set and for query sizes of 0.1, 0.3, 0.5, and 0.7. Note
that the proposed allocation scheme results in poor performance as query size is
small. As stated before, we allocate buckets to disks by Hilbert sorting buckets
according to their bounding cube center point and allocating in a round robin
fashion. This performance degradation is possible the result of the space filling
curve failing to preserve spatial proximity between data blocks. However, our
algorithm does gives nearly optimal performance as query size increases. In all
cases, our method gives performance within 200% of strict optimal declustering
algorithm in allocation aspect.

6.4 Improving DC-SH Through Better Allocation

The exhibited degradation for small queries presented in the previous section
lead us to consider a different, and better, allocation method. We combined

13

 10

 20

 30

 40

 50

 60

 8 16 24 32 40 48 56 64

av
er

ag
e

re
sp

on
se

 ti
m

e

number of disks

Query side length: 0.3

DC-SHHilbert
DC-SHmax-cut

GRAPH

 30

 60

 90

 120

 150

 180

 8 16 24 32 40 48 56 64

av
er

ag
e

re
sp

on
se

 ti
m

e

number of disks

Query side length: 0.7

DC-SHHilbert
DC-SHmax-cut

GRAPH

Fig. 9. Performance test on an alternative allocation scheme(Max-cut graph partition-
ing algorithm)

the DC-SH bucketing algorithm with the max cut graph partitioning bucket-
to-disk allocation scheme proposed in [12]. We have done an initial experiment
with 9 dimensional ColorMoments data to show the effect. In Figure 9 we plot
average response time versus number of disks for two query sizes. In this figure,
DC-SHHilbert represents our proposed allocation scheme, DC-SHmax−cut is our
bucketing algorithm with max cut graph partitioning algorithm as an allocation
scheme, and GRAPH is the original max cut graph partitioning algorithm[12],
which was applied to data pages of a Gridfile[14]. As we see in this example,
one can further improve declustering performance by combining our improved
bucketing algorithm with a better bucket-to-disk allocation scheme.

7 Conclusions

In this paper, we proposed an efficient bucketing algorithm for non-uniform low
and high dimensional data. Our method builds an approximate nearest neigh-
bor graph by employing multiple shifted Hilbert curves. Our proposed nearest
neighbor graph can be built at low time and space cost. After building the
nearest neighbor graph, we place data objects onto a disk block in a way that
preserve spatial proximity among them so that minimize dead space within a
block and maximize storage utilization. Our method appears to adapt better to
non-uniform and high dimensional data sets than previous methods.

Our experimental results show that, for the data sets considered, our pro-
posed algorithm is highly stable to the number of disks and considerably out-
performs both GRS, currently the best tiling based declustering method, and
also the weighted similarity graph partitioning method, explicitly proposed for
declustering non-uniform data.

The contributions of our study are summarized as follows:

– We explored the effects of a bucketing scheme on the performance of a declus-
tering algorithm by analysis and experiments.

– We proposed a simple and efficient bucketing algorithm which for the data
considered is adaptable to different data distributions regardless of dimen-
sion.

14

– Our proposed declustering algorithm, bucketing plus allocation, for the real
skewed and high-dimensional data sets tested, results in a response time
improvement of 1.5 to 5.0 times relative to the existing algorithms.

– Our proposed bucketing algorithm can be combined with previous bucket-
to-disk allocation schemes, such as [12], to further enhance performance.

Acknowledgments

This work was supported by KOSEF grants number 01-2002-000-10014-0, by
KOSEF grants number R05-2002-000-01288-0, by program for cultivating grad-
uate students in regional strategic industry and by NSF grants number IRI-
9610240 and ACR-9733658.

References

1. K. Abdel-Ghaffar and A. E. Abbadi. Optimal Allocation of Two-Dimensional
Data. In Proc. ICDT Conf, pages 409–418, 1997.

2. M.J. Atallah and S. Prabhakar. (Almost) Optimal Parallel Block Access for Range
Queries. In Proc. PODS Conf, pages 205–215, 2000.

3. R. Bhatia, R.K. Sinha, and C.-M. Chen. Declustering Using Golden Ratio Se-
quences. In Proc. ICDE Conf, pages 271–280, 2000.

4. C.M. Chen and C. T. Cheng. From Discrepancy to Declustering: Near optimal
multidimensional declustering strategies for range queries. In Proc. PODS Conf,
pages 29–38, 2002.

5. H.C Du and J.S. Sobolewski. Disk Allocation for Cartisian Files on Multiple-Disk
Systems. ACM Trans. Database Systems, 7(1):82–102, 1982.

6. C. Faloutsos and P. Bhagwat. Declustering Using Fractals. In Proc. Parallel and
Distributed Information Systems Conf, pages 18–25, 1993.

7. C. Faloutsos and D. Metaxas. Disk Allocation Methods Using Error Correcting
Codes. IEEE Trans on Computers, 40(8):907–914, 1991.

8. M.T. Fang, R.C.T. Lee, and C.C. Chang. The Idea of De-Clustering and Its
applications. In Proc. VLDB Conf, pages 181–188, 1986.

9. H.C. Kim and K.J. Li. Declustering Spatial Objects by Clustering for Parallel
Disks. In Proc. DEXA Conf, pages 450–459, 2001.

10. M.H. Kim and S. Pramanik. Optimal File Distribution For Partial Match Re-
trieval. In Proc. SIGMOD Conf, pages 173–182, 1988.

11. S. Liao, M.A. Lopez, and S.T. Leutenegger. High Dimensional Similarity Search
With Space Filling Curves. In Proc. ICDE Conf, pages 615–622, 2001.

12. D.R. Liu and S. Shekhar. Partitioning Similarity Graphs: A Framework for Declus-
tering Problems. International Journal Information System, 21(6):475–496, 1996.

13. D.R. Liu and M.Y. Wu. A Hypergraph Based Approach to Declustering Problems.
Distributed and Parallel Databases, 10(3):269–288, 2001.

14. J. Nievergelt, H. Hinteberger, and K.D. Sevcik. The Grid file: An Adaptable,
Symmetric Multi-Key File Structure. ACM Trans. on Database Systems, 9(1):38–
71, 1984.

15. S. Prabhakar, K. Abdel-Ghaffar, and A. El Abbadi. Cyclic Allocation of Two-
Dimensional Data. In Proc. ICDE Conf, pages 94–101, 1998.

