
Continuous Perspective Query Processing for
3-D Objects on Road Networks

Joon-Seok Kim, Kyoung-Sook Kim, and Ki-Joune Li†
Department of Computer Science and Engineering

Pusan National University, Pusan 609-735, South Korea
{joonseok,ksookim,lik}@pnu.edu

Abstract. In order to provide a streaming service of 3-D spatial objects
to the mobile clients on a street, we propose a new query type, called
continuous perspective query. The perspective query differs from conven-
tional spatial queries in that the levels of details (LOD) of query results
depend on the distance between the query point and spatial objects. The
objects in the vicinity are to be provided with a higher LOD than those
far from the query point. We are dealing with continuous queries, and
the LODs of the results are also changing according to the distance from
the mobile query point. The LOD of the result for an object changes
from a low LOD to a high LOD as the mobile query point approaches
to the object. In this paper, we also propose a processing method for
continuous perspective query to reduce the processing cost at the server
and communication cost between the server and the mobile clients.

Key words: continuous perspective query, road network, LOD, 3-D ob-
jects

1 Introduction

Most location-based services provide mobile users with the information of spatial
objects such as buildings and roads in 2-D or 2.5-D. However we may achieve
a higher quality of service when the 3-D information is offered such as 3-D
geometry, and colors and texture on the facets of the objects. This information
enables more realistic visualization of objects than simple 2-D data.

One of the main problems in providing 3-D information to mobile clients
comes from the large size of data. It is almost impossible to store a large volume
of 3-D data in a mobile device such as PDA and mobile phone with a relatively
small size of memory. Furthermore, the transmission of 3-D data is limited due
to the narrow bandwidth of wireless communication.

The basic idea of this paper is based on the observation that we do not need
a detail information on an object, which is far from the query point but only its
simplified sketch. However, more detail information is progressively required as
the query point becomes close to the object. In this paper, we propose a new
type of query, called continuous perspective query for this purpose. This query
is a kind of continuous query, where the levels of details (LOD) of query results

depend on the distance between the query point and spatial objects. The objects
closely located to the query point are to be provided with a higher LOD than
those far from the query point.

Since we are dealing with continuous queries, the LODs of the results are
also changing according to the distance from the mobile query point. The LOD
of the results should be upgraded as the mobile query point approaches to the
object. And an efficient protocol of upgrades reduces the communication cost and
processing cost at the server. For this reason, a method is proposed to process
the continuous perspective query and upgrade LOD in this paper.

The remainder of paper is organized as follows. In section 2, we review related
work in perspective query and continuous query. We describe the basic concept
and define continuous perspective query in the next section. In section 4, we
propose a processing method for the query for the mobile clients on the streets.
An analysis of performance is presented in section 5 and we conclude the paper
in section 6

2 Related work and motivation

A perspective query is to request data, which have different levels of detail
according to the importance of data. In GIS and LBS, this type of query is used
to optimize the processing of geo-visualization. We may simplify a certain level
of geometries of objects that are relatively far from the viewpoint to reduce the
size of data. For this type of query, several researches have been done since last
few years. For example, a processing method was proposed for perspective query
by selecting proper LOD(Level of Detail) based on the range from the viewpoint
in [3]. By this method, the entire space is divided into three ranges according
to the distance from the viewpoint and a proper LOD is assigned to each range
from high LOD to low LOD.

LOD-R-trees was proposed to index spatial objects with LOD in [1], which
is a new data structure combined with R-trees and LODs. It stores the graphic
data of spatial objects at each node and returns properly simplified LOD ac-
cording to the distance. Similarly, V-Reactive tree was proposed in [2], which is
another variant of R-trees for multiple LODs. It can be used for implementing
the generalization of multi-LODs technique.

However the mobility of viewpoint has not been considered by these work. In
most applications of perspective query such as LBS and navigation services, the
spatial query condition continuously changes for a given period of time. During
this time period, the queries are to be repeatedly evaluated for providing the
correct information as changes the spatial query condition. This query is called
continuous query [4]. Recently, a lot of attention has been paid to continuous
range query and continuous k-nearest neighbor query. They are summarized by
table 1.

Among these work, a dynamic query type was defined as a temporally series
of snapshot queries in [5], where the authors proposed an index data structure
for the trajectories of moving objects and described how to evaluate dynamic

XXXXXXXXXXXXX

mobility of

(query, object)

types
Range K-NN

(static query, dynamic objects) [6–8, 10] [11, 15]

(dynamic query, static objects) [5, 6, 10] [11–14]

(dynamic query, dynamic objects) [5, 6, 10] [11]

Table 1. classification of movement patterns and types of continuous queries

queries efficiently which represent predictable or non-predictable movement of
an observer. D. Stojanovic et al. proposed a method for continuous range query
processing in [6], characterized by the mobility of objects and queries that fol-
low paths in an underlying spatial network. They introduced an additional pre-
refinement step which generates main memory data structures to support peri-
odical and incremental refinement steps.

In [7], a velocity constrained indexing and query indexing (Q-index) have
been proposed by S. Prabhakar et. al. to evaluate continuous range queries.
By indexing queries instead of objects, we reduce frequent updates of the in-
dex structure and expensive maintenance of index structure. By assuming that
there is a sufficient amount of memory and computation power, Ying Cai et al.
claimed in [8] that range queries relevant to an object can be sent to it to quickly
determine whether an update be needed.

A scheme called Motion Adaptive Indexing (MAI) was proposed by B. Gedick
in [9]. This enables optimization of continuous query evaluation according to the
dynamic motion behavior of the objects. In this paper, the authors introduced
the concept of motion sensitive bounding boxes (MSB) to model and index both
moving objects and moving queries.

Mokbel et al. proposed a method based on shared execution and incremental
evaluation of continuous queries, called SINA in [10]. Shared execution is per-
formed for query evaluation as a spatial join between the mobile objects and
the queries. The incremental evaluation means that the query processing system
produces only positive or negative updates from the previous result.

The continuous query and perspective query have been separately considered
by the previous work. However we integrate these two types of query into a
new one to reduce the communication and processing cost. In most cases, the
streaming services of mobile clients are required on streets for pedestrians or car
drivers. For this reason, we focus on the query of mobile clients who moves on
road networks instead of Euclidian space.

3 Basic concepts of continuous perspective query

In this section, we define continuous perspective query through a combination
of perspective query and continuous query. Figure 1 illustrates an example of
continuous perspective query. The results of perspective query change as the

viewpoint moves from t1, t2, t3, . . . , to tn. For example the LOD of object b
upgrades from low LOD at t1, medium LOD at t2, to high LOD at t3. Hence,
continuous perspective query is considered as an extended perspective query
type to reflect the mobility of query point.

t1 t2 t3 tn

…

…

high
LOD

medium
LOD

low
LOD

a b c

Fig. 1. Example of continuous perspective query

3.1 Perspective query

A perspective query is intended first to search spatial objects in view range, and
second to determine their LOD. The query is given with three parameters, which
are viewpoint, view direction, and view angle as follows,

– viewpoint: the query point in 3D space is given as vp = (x, y, z) in figure
2(a).

– view direction: the direction of the viewpoint in 3D space is given as vdir =
(ϕ, θ) in figure 2(a), where ϕ is the horizontal angle of view in the plane XY
and θ is the vertical angle from the XY plane.

– view angle: the view angle is given as vang = (α, β), where α and β are the
vertical and horizontal extents of view angle as figure 2(b).

A query region, which is surrounded by four triangular bounding planes as
figure 2(c), is defined as qreg = (vp, vdir, vang). Then we give the definition of
perspective query in terms of the result set of the query as follows;

Definition 1. Perspective Query

Qp(qreg) = {(s, l)| s ∈ S, l ∈ L}

S in this definition represents the set of spatial objects and L = {LOD1, LOD2, ..., LODn}
is the set of LODs.

Figure 3 shows an example of perspective query and its results. Given a
set of six spatial objects a, b, c, d, e, f and a query region qreg = (vp, vdir, vang),

vp

vd

θ
ϕ

O X

Y

Z

(a) viewpoint, view direction

vp

α β

vd

(b) view angle

vp

(c) query region

Fig. 2. Parameters of perspective query and query region

qreg = (vp, vdir, vang)

vdir

vang

S = {a, b, c, d, e, f }

Qp(qreg)
 = {(b, LOD3), (c, LOD2),
 (d, LOD2), (e, LOD1)}

vp
LOD3

LOD2
LOD1

a

b

c

d

e

Fig. 3. Example of perspective query

then the result of the query is {(b, LOD3), (c, LOD2), (d, LOD2), (e, LOD3)}.
The object a is not in the result because it is out of query region and object f
does not belong to the result since the distance from the viewpoint exceeds the
maximum threshold. Objects b, c and e are in the range of LOD3, LOD2 and
LOD1, respectively.

3.2 Continuous perspective query

Continuous perspective query is to continuously update results of perspective
query as time goes by. As range query or k-NN query become continuous query
by the movement of query point, a perspective query becomes a continuous
perspective query according to the change of the parameters (vp, vdir, vang). This
is presented in figure 4.

vp

(a) change of viewpoint

vp

(b) change of view direction

vp

(c) change of view angle

Fig. 4. Changes of parameters in perspective query

Let qreg(t) be the query region at time t. Then we can represent perspective
query as a function of time, Qp(qreg(t)) as follows, where T is a set of sampled
time.

Definition 2. Continuous Perspective Query

Qcp(T) = {(t,Qp(qreg(t))) | t ∈ T}

Figure 5 illustrates a continuous perspective query for the sampled times t1,
t2, t3, and t4, where there are only two LODs, which are LOD1 and LOD2.
While the query result at t1 is {(a, LOD1)}, the LOD is upgraded to LOD2. It
becomes {(a, LOD2), (b, LOD1)} at t2, since a new object b is included in the
query region.

3.3 Continuous perspective query on road networks

In this paper, we restrict the continuous perspective query to road network space
for two reasons. First, most real applications of perspective query are related to
the navigation of vehicles and the information about 3-D spatial objects along
a road is very useful to drivers.

Qcp(T)= { (t1, {(a,LOD1)}),
 (t2, {(a,LOD2)}),
 (t3, {(a,LOD2),(b,LOD1)}),
 (t4, {(b,LOD1),(c,LOD1)}),
 … }

c

a

time

t1 t2 t3 t4

b

Fig. 5. Continuous perspective query

Second, we can easily obtain the view direction and angles of a vehicle on a
road. Once a vehicle is on a given road, we can compute the view direction of
the driver from the direction of the road. We can also define the view angle of
the driver in spite of slight difference between drivers and vehicle types. This
means that the third parameter of continuous perspective query, vang is fixed,
and the second parameter vdir depends on the road where the vehicle is located.
For these reasons, we focus on road network space rather than Euclidian space.

Then we redefine the query region of continuous perspective query for road
network space based on these assumptions and observations. First the position
on road networks is given as (segID, d), where segID is the segment ID of a road
segment and d is the displacement from the starting point of the road segment.
As a consequence, the query region is defined, differently from the definition
of the previous section, as qreg = (segID, d, dirRS , vang), where dirRS is the
direction of the road segment, and vang is given a priori.

For the reason of convenience, we define rsi, which means road segment
interval, as rsi = (segID, ds, de), where ds and de are the starting and ending
displacements respectively within a road segment segID. And we also define a
sequence of rsi, SEQrsi = (rsi1, rsi2, rsi3, . . . , rsin). In fact, a SEQrsi implies
the route of a moving object on road networks as shown in figure 6(b). These
definitions are illustrated in figure 6(a) and 6(b).

4 Query processing for continuous perspective query

In this section, we propose a query processing method for continuous perspective
query on road networks. The objectives of proposed method are to reduce the
processing and communication costs.

ds destart
point

end
point

Road segment

Road segment interval

(a) rsi(road segment interval)

rsi1 rsi2 rsi6

rsi4

rs
i 3

rs
i 5

(b) Sequence of rsi

Fig. 6. Road segment interval and sequence of it

4.1 Requirements for processing continuous perspective query

Before explaining the query processing method, we introduce a notion of change
point, which will be required for the query processing. A set of change points
CP (rsi) on a road segment interval rsi is defined as a set of points where the
result of a continuous perspective query should be changed as the view position
is moving along the road segment interval rsi. In fact, the change of the query
result takes place when the view position is passing though specific points on
the road as shown in figure 7.

Then we define the continuous perspective query on road segment and road
networks differently from the definition 2.

Definition 3. Continuous Perspective Query on Road Segment

Qcprs(rsi) = {(p,Qp(p))|p ∈ CP (rsi)}

Definition 4. Continuous Perspective Query on Road Networks

Qcprn(SEQrsi) =
⋃

ris∈SEQrsi

Qcprs(rsi)

Figure 7 shows examples of change positions and continuous perspective
query on a road segment. The sampling time in figure 5 is replaced with the
change positions in figure 7.

The conceptual processing steps for continuous perspective query is summa-
rized as follows. First, the view point from a mobile client is periodically reported
to the server where the 3-D databases are stored. Second, the server sends the
query result to the client. Since the query result is a stream, the server sends
only the difference from the previous result to the mobile client. It means that
the server does not need to send the query result if no difference of the result
is found. And the server tells whether there is any difference by means of the
change point. If the viewpoint is passing though a change point, it means that
a difference is taking place and the difference is to be sent to the mobile client.

Qcprs(rsi)= { (p1, {(a,LOD1)}),
 (p2, {(a,LOD2)}),
 (p3, {(a,LOD2),(b,LOD1)}),
 (p4, {(b,LOD1),(c,LOD1)}),
 … }

rsi= (seg12, [0, 1])c

a

p1

seg12

p2 p3 p4

b

Fig. 7. Change positions and continuous perspective query on road segment

The information about the difference is described as an update u = (p, s, LOD, op),
where p is a change position, s and LOD are a 3-D object and its LOD respec-
tively, and, op is an operation, which is one of add, remove, or update. This
conceptual query processing steps are illustrated by figure 8 and summarized as
follows,

• step 1: The viewpoint is sent to the server.
• step 2: The server checks if the viewpoint is passing through a change point.

Then the server sends the update information u to the client.
• step 3: repeat step 1 and step 2

Seg 1

MO 1

MO 2

MO 3

Seg 2

Seg 3

Seg 4

Seg 5Seg 6

Seg 7

Seg 5

Spatial DB Server

(seg1, 0.6, so4, LOD1, add)

(seg5, 0.1, so4, LOD2, update)

(seg5, 0.7, so4, LOD2, delete)

…

Update : MO 1

Update : MO 1

(seg5, 0.8, so1, LOD1, add)

(seg5, 0.8, so1, LOD1, delete)

so1

so4

so3

so2

so5

Fig. 8. System architecture of 3D database server

4.2 Query processing by pre-fetching

In order to reduce the communication between the server and clients, and to
improve the response time at clients, we can pre-fetch possible updates when a

viewpoint is entering to a road segment interval. Then the continuous perspective
query processing on a road segment consists of the following steps;

• step 1: the client sends the road segment interval (rsi) to the server when
entering the rsi.

• step 2: the server computes the query region from the rsi.
• step 3: the server searches the change points contained in the query region.
• step 4: the server computes the update at each change point.
• step 5: the server sends the sorted set of updates on the rsi to the client.
• step 6: repeat from step 1 to step 5.

Figure 9 explains the query processing, where only one LOD is defined for
the reason of simplicity. First figure 9(a) shows the step 2 and 3 that the server
computes the query region and searches the spatial objects contained by the
query region. The object a and h are excluded from the candidate objects because
they are not contained by the query region. Figure 9(b) represents the processing
step 4 and 5. The objects b and i are removed from the query result since they
are out of the query region. And the change positions are computed from the
searched objects (c, d, e, f , g). Finally, the sorted list of updates according to
change positions is sent to the client.

MBR

a

b

d

c e

f

g

i

h

(a) Filter step

e c
f

d g e

b

c

d

e

f

g

i

(b) Refinement step

Fig. 9. Query processing by rsi

After the client receives the the sorted list, it triggers each update in the
sorted list, when the viewpoint passes through a change point in the list. In
order to compute and send the sorted list of updates, we need a preprocessing
at the server side, which will be explained in the next subsequent section.

4.3 Data structures for the preprocessed results

Since the computation of change positions and the corresponding updates are
fixed once a road segment and 3-D objects are given, we do not need to repeat
unnecessary computations. Instead we can simply get the pre-computed list of
a given road segment and reduce the overhead on the server.

231

displacement SOID size(byte)operation

… … ……

0.15 3231 1523delete

0.21 63263 17123delete

0.3 15234 104add

0.31 44141 23412update

… … ……

RSI ID Page No.

… …

1440 231

1441 242

… …

1440RSI ID

MappingTable

LOD

…

2

3

1

3

…

0.11 8412 132add1

Fig. 10. Structure of sorted offset list

We propose the data structures of the preprocessed list of each road segment
to efficiently retrieve the results and provide the stream of the results to mobile
clients. Figure 10 shows the data structures of the sorted list of updates. First a
mapping table contains the identifier of road segment interval and the disk page
number where the pre-computed sorted list is stored. Second the pre-computed
sorted list is stored at the corresponding disk page as shown by figure 10. The
size of each object to send to client is also included as an attribute, since this
information is useful for the transfer between the server and client.

5 Evaluation of performance

In this section, we will investigate the performance of the proposed query pro-
cessing method. The processing cost of the query includes the cost of the server,
the communication cost, and the cost at the client side. The performance bottle-
neck of the entire system comes from the costs of the server and communication,
which we will discuss in this paper.

5.1 Environment of experiments

We prepared a set of 3-D spatial objects for the test data, extracted from the
real building data in Daejon city area. This data set consists of three LODs,
where LOD 1 describes only the simplified geometry of building objects, LOD 2
includes the detail geometry and texture of buildings, and the real facet image
of a building is contained in LOD 3.

And in order to analyze the cost with several query ranges, we defined the
several visible ranges of each LOD as table 2. For the LOD type 1, the lengths
of query range are defined so that the LOD 1 of a 3-D object with 10 m height
be displayed as a 5 mm object on a screen of 200 mm x 100 mm. For the LOD 2,
this object should be displayed as an 1 cm object on the screen, and LOD 3 be
as 5 cm object. Then for LOD type 1, the lengths of the query ranges for LOD 1,

LOD 2, and LOD 3 become 117 m, 58 m, and 11 m, respectively. Similarly, the
lengths of query range for LOD type k are determined as k times of the lengths
in LOD type 1 as shown by table 2.

LOD1 LOD2 LOD3

LOD type1 117m 58m 11m

LOD type2 234m 116m 22m

LOD type3 351m 174m 33m

LOD type4 468m 232m 44m

LOD type5 585m 290m 55m

Table 2. Lengths of query ranges for several LOD types

5.2 Cost at the server

The cost at the server is mainly determined by the costs for searching and pre-
fetching the sorted list, and reading the data of 3D objects, when the viewpoint
is entering a new road segment interval. Let us assume that all data are stored on
disk except the mapping table. Then the processing cost for new road segment
interval CRSI is given as

CRSI = CMT + CSDL + CDATA

CMT is the cost for accessing the mapping table, CSDL is for reading the
disk pages of the sorted list for a given road segment interval, and CDATA for
retrieving the data of 3-D objects on the road segment interval. However the size
of the mapping table is small and can be stored in main memory, we ignore the
cost for the mapping table CMT .

The cost for accessing the sorted list disk pages depends on the number of
tuples on the road segment interval. If the length of the road segment interval
is sufficiently short, the all change positions can be stored at a single disk page.
But as grows the length, the number of disk pages increases. Figure 11 shows
this relationship with several LOD types. Since the size of a tuple of the sorted
list is 16 bytes, 256 tuples are stored at a disk page of 4 K bytes. It means that
we need 4 disk pages to store a sorted list of LOD type 1 when the length of
road segment interval is 200 meters. We observe that the number of tuples to
transfer is proportional to the length of road segment interval, which is obvious
when the density of 3-D objects is uniform.

The cost for retrieving the data of 3-D objects is determined by the size of
3D data and the placement on the disk. Table 3 shows approximate average sizes
of a 3-D object at different LODs.

As shown in table 3, we see that the size of 3-D object for LOD 3 is quite large
and it is practically the bottleneck of the server performance. The processing cost

0

1024

2048

3072

4096

5120

200 400 600 800 1000

length of rsi (m)

nu
m

be
r

of
 tu

pl
es

LOD type1

LOD type2

LOD type3

Fig. 11. Number of tuples at a road segment interval

size

LOD 1 200 Bytes

LOD 2 1 K Bytes

LOD 3 100 K Bytes

Table 3. Approximate sizes of 3D object for different LODs

at the server is determined by CDATA than CSDL due to the large size of 3-D
object of LOD 3. This fact is clearly illustrated in table 4, which shows the total
cost CRSI of the server.

length of rsi 200 400 600 800 1000

CData 468.6 937.2 1405.8 1874.5 2343.1

CSDL 1 2 3 4 5

CTotal 469.6 939.2 1408.9 1878.5 2348.1

Table 4. Cost for retrieving data and the total cost at the server (disk page: 4K bytes)

5.3 Cost for communication

The communication cost is divided into two measures; the number of commu-
nications and the size of data to transfer. The number of communications from
the server to mobile clients depends on the number of entrances to a new road
segment interval. This means that we may reduce the number of communications
by enlarging the length of road segment intervals. On the other side, a long road
segment interval results in a large amount of data of a transfer.

The size of data to transfer depends on the number of updates. Figure 12
show the relation between the amount of data to transfer and the length of a
road segment interval. For example, the server should transfer about 10 K bytes

0

10

20

30

40

50

1 2 3 4 5

LOD Type

da
ta

 s
iz

e
(K

B
)

Fig. 12. Amount of data to transfer per 1 m

per 1 meters as shown in figure 12. Suppose that a vehicle is moving in 36 km/h.
Then the server should transfer 100 K bytes per second. It means that we should
either provide a high speed wireless communication media or reduce the size of
LOD 3 data to support the continuous perspective query.

6 Conclusions

In this paper, we proposed a new type of query, called continuous perspective
query to support stream services of 3D data to navigation users on the street. In
comparison with the conventional spatial query such as range query, the results
of perspective query depends on the distance between the query point and spatial
objects and multiple LODs are applied to the results according to the distance.
The contributions of our work are summarized as follows;

• we have introduced the continuous perspective query type. The query may
be used for providing streaming service of 3-D data to navigation users along
streets.

• an efficient query processing method has been proposed, which is based on
pre-fetching and preprocessing techniques.

In this paper, we excluded the data modelling and progressive transfer issues
from the scope of the study. We assumed that a complete data of a 3D object
should be transferred when upgrading its LODs, for example from LOD 2 to
LOD3. However, we could reduce the amount of data to transfer by a progressive
transfer of 3D geometry data. And a careful data model is required to realize
the progressive transfer. For this reason, our future work will include the data
modelling and progressive transfer for continuous perspective query processing.

References

1. Michael Kofler, Michael Gervautz, and Michael Gruber.: “R-trees for Organizing and
Visualizing 3D GIS Databases”. Journal of Visualization and Computer Animation,
vol. 11, No. 3 (2000) 129-143

2. Jun Li, Ning Jing, and Maoyin Sun.: “Spatial Database Techniques Oriented to
Visualization in 3D GIS”. In Proceedings of the 2nd International Symposium on
Digital Earth 2001

3. Tomas Moller, Eric Haines, and Tomas Akenine-Moller.: “Real-Time Rendering”,
2nd Edition, A. K. Peters 2002

4. Douglas B. Terry, David Goldberg, David Nichols, and Brian M. Oki, “Continuous
Queries over Append-Only Databases”, In Proceedings of ACM SIGMOD Confer-
ence 1992, 321-330,

5. Iosif Lazaridis, Kriengkrai Porkaew, and Sharad Mehrotra.: “Dynamic Queries over
Mobile Objects”. In Proceedings of EDBT Conference 2002, 269-286

6. Dragan Stojanovic, Slobodanka Djordjevic-Kajan, Apostolos N. Papadopoulos, and
Alexandros Nanopoulos.: “Continuous Range Query Processing for Network Con-
strained Mobile Objects”. In Proceedings of the 8th ICEIS 2006, 63-70

7. Sunil Prabhakar, Yuni Xia, Dimitri Kalashnikov, Walid Aref, and Susanne E. Ham-
brusch.: “Query Indexing and Velocity Constrained Indexing: Scalable Techniques
for Continuous Queries on Moving Objects”. IEEE Transactions on Computers,
October, Vol. 51, No. 10 (2002)

8. Ying Cai, Kien A. Hua, and Guohong Cao.: “Processing Range-Monitoring Queries
on Heterogeneous Mobile Objects”. In Proceedings of Mobile Data Management
Conference 2004

9. Bugra Gedik, Kun-Lung Wu, Philip Yu, and Ling Liu.: “Motion Adaptive Indexing
for Moving Continual Queries over Moving Objects”. In Proceedings of the CIKM
Conference 2004, 427-436

10. Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref.: “SINA: Scalable Incre-
mental Processing of Continuous Queries in Spatio-temporal Databases”. In Pro-
ceedings of SIGMOD Conference 2004, 623-634

11. Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref.: “SEA-CNN: Scal-
able Processing of Continuous K-Nearest Neighbor Queries in Spatio-temporal
Databases”. In Proceedings of ICDE 2005, 643-654

12. Mohammad R. Kolahdouzan and Cyrus Shahabi.: “Continuous K-nearest neighbor
queries in spatial network databases”. In Proceedings of STDBM 2004, 33-40

13. Hyung-Ju Cho, and Chin-Wan Chung.: “An Efficient and Scalable Approach to
CNN Queries in a Road Network”. In Proceedings of VLDB 2005, 865-876

14. Yufei Tao, Dimitris Papadias, and Qiongmao Shen.: “Continuous Nearest Neighbor
Search”. In Proceedings of VLDB 2002

15. Kyriakos Mouratidis, Man L. Yiu, Dimitris Papadias, and Nikos Mamoulis.: “Con-
tinuous Nearest Neighbor Monitoring in Road Networks”. In Proceedings of VLDB
2006

