Data Update across Multi-scale databases

2004. 06. 09

HaeKyong Helen Kang
Multi-scale Databases

- A set of spatial databases.
- Covering the same geographic areas.
- Derivation from existing databases with constraints.

Real World

(Existing DBs)

1:500

1:1000

…

1:5000

1:25000

…

(Derived DBs)
Motivation

- Preservation of Derivation Constraints

Building Block

- Union if distance < 50
- Automatic update

Building

1. s1 s2
2. s3
3. s4 s5
4. s6
Derivation Of Multi-Scale Databases

- Functions for multi-scale databases

Source DB (building) → Multi-Scale Data Operators
(union if distance<50)
constraint

Multi-Scale DB Maintenance (Update) → Consistency

Multi-Scale DB (buildingBlock) → Functions for multi-scale DBs

(The focus of this paper)
Goal and Approach

- **Goal**
 - Preservation of derivation constraints by update propagation
 - Consistency maintenance of a multi-scale database.

- **Approach**
 - Incremental update of multi-scale database
A Multi-Scale Data Model

- FeatureClass
 - SourceFeatureClass
 - geo: SpatialObject
 - attribute1
 - MultiScaleFeatureClass
 - geo: spatialObject
 - derivedAtt
 - SpatialObject
 - derivedBy f()
 - derivation_information
 - Polygon
 - Point
 - Line

- Relation
 - ClassDirectory
 - srcClass
 - drvClass
 - derivationOperator
 - derivationPredicate
 - objectDirectory
 - ObjectDirectory
 - predicate
 - srcObjects
 - drvObject

- 1..0.*
- 0..1
- 1..*
Example of a Multi-Scale Data Model

Diagram showing the relationship between source files and building blocks, with GeoAggregation and derivation information.
Types of a Constraint and an update

- Constraints, based on semantic-abstraction
 - Attribute Specified
 - CLASSIFICATION LandUse TO ResidentialArea WITH ResidentialType;
 - Attribute-Value Specified
 - CLASSIFICATION LandUse TO ResidentialArea WITH ResidentialType;
 - Value Specified
 - GeoAggregation Building TO BuildingBlock With Distance < 50;
Types of a Constraint and an update

Updates for the each constraint

<table>
<thead>
<tr>
<th>update constraint</th>
<th>Insert</th>
<th>Delete</th>
<th>Change Goem</th>
<th>Change Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute - Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Set of Rules and Algorithms

<table>
<thead>
<tr>
<th>Attribute Constraint</th>
<th>Insert</th>
<th>Delete</th>
<th>Change Goem</th>
<th>Change Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule1</td>
<td>Algorithm 1</td>
<td>Algorithm 2</td>
<td>Rule3</td>
<td>Algorithm 1,2</td>
</tr>
<tr>
<td>Rule5</td>
<td>Algorithm 1</td>
<td>Algorithm 2</td>
<td>Rule7</td>
<td>Algorithm 1,2</td>
</tr>
<tr>
<td>Rule9</td>
<td>Algorithm 4</td>
<td>Algorithm 5</td>
<td>Rule11</td>
<td>Algorithm 4,5</td>
</tr>
</tbody>
</table>

- **Rule1**: Rule for Insertion
- **Rule2**: Rule for Deletion
- **Rule3**: Rule for Changing Goem
- **Rule4**: Rule for Changing Attribute
- **Rule5**: Rule for Insertion
- **Rule6**: Rule for Deletion
- **Rule7**: Rule for Changing Goem
- **Rule8**: Rule for Changing Attribute
- **Rule9**: Rule for Insertion
- **Rule10**: Rule for Deletion
- **Rule11**: Rule for Changing Goem

Notations:
- Insert: Rule1, Rule5, Rule9
- Delete: Rule2, Rule6, Rule10
- Change Goem: Rule3, Rule7
- Change Attribute: Rule4, Rule8

Algorithms:
- Algorithm 1
- Algorithm 2
- Algorithm 3
- Algorithm 4
- Algorithm 5
- Algorithm 1,2
Prototype of A Multi-Scale Database Manager

- In Developing with a spatial library of ESRI(ArcObjects).
- Main Features of A Multi-Scale Database Manager
Example of Update Propagation Rule 11

- A source database and a multi-scale databases
 - Constraint type: value specified constraint (Distance < 50)
Example of Update Propagation Rule 11

- Update of the source database
 - fsrc3 is moved into the next of fsrc6.
 - Update type: change geometry

- Thus, Rule 11 is applied to this situation
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Feature Class</td>
<td>a set of features; $FCSRC$: a set of source features; FC_{DRV}: a set of derived features from $FCSRC$</td>
</tr>
<tr>
<td>f</td>
<td>A set of features in FC</td>
<td>f_i: ith feature, f.geo: a spatial shape of a feature $f{ins}$: a set of inserted features</td>
</tr>
<tr>
<td>R_{CDRY}</td>
<td>Class Directory Class</td>
<td>a set of relations between $FCSRC$ and FC_{DRV}</td>
</tr>
<tr>
<td>R_{ODRY}</td>
<td>Object Directory Class</td>
<td>a set of relations between f_{SRC} and f_{DRV}</td>
</tr>
<tr>
<td>att</td>
<td>Attribute</td>
<td>$FC.att$: an attribute of FC; $f.att_j$: jth attribute of a feature f</td>
</tr>
<tr>
<td>$dom(att)$</td>
<td>Domain of att</td>
<td>the ranges of attribute values of att</td>
</tr>
<tr>
<td>v</td>
<td>An attribute value</td>
<td>$f.a = v$: v is an attribute value of $f.a$</td>
</tr>
</tbody>
</table>
Example of Update Propagation Rule 11

- Rule 11

ChangeGEOM \(f_{ch} \) in \(FC_{SRC} \)

- \(f_{drv_i} \) in \(FC_{DRV} \) derived from \(f_{ch} \), to be modified

 INSERT \(f_{new1} \)
 INTO \(FC_{DRV} \)
 BY \(\text{union}(f_{src} - f_{ch}) \),
 WHERE \(f_{src} - f_{ch} \) satisfies with \(v \)

 DELETE \(f_{drv_i} \)
 FROM \(FC_{DRV} \)

- \(f_{drv_j} \) in \(FC_{DRV} \), not derived from \(f_{ch} \), to be modified.

 INSERT \(f_{new2} \)
 INTO \(FC_{DRV} \)
 BY \(\text{union}(f_{ch} \cup f_{drv_j}) \)
 WHERE \(f_{ch} \cup f_{drv_j} \) satisfies with \(v \)

 DELETE \(f_{drv_j} \)
 FROM \(FC_{DRV} \)

Algorithm 4 (Insert)

Algorithm 5 (Delete)
Example of Update Propagation Rule 11

Algorithm 4 : Insertion

Input: $F_{C_{SRC}}, F_{C_{DRV}}, R_{CDR_Y}, R_{ODR_Y}$
Output: $F_{C_{DRV}}$, updated

Method:

1: Let $ListUpdateObj$ be a list of objects(f_{ins}) in $F_{C_{SRC}}$ of which geometry is changed.

2: Let f_{drv} be all objects of $F_{C_{DRV}}$.

3: $constraint \leftarrow R_{CDR_Y}.derivationPredicate$ <50

4: While ($ListUpdateObj \neq \emptyset$) Do

5: Get f_{ins} from $ListUpdateObj$

6: Get f_{drv} satisfies a constraint with f_{ins}

7: $F_{C_{DRV}} \leftarrow union(f_{ins} \cup f_{drv})$,

where ($f_{chk} f_{ins} \cup f_{drv}$ satisfies with $constraint$

8: End while
Example of Update Propagation Rule 11

Algorithm 5: Deletion

Input: FC_{SRC}, FC_{DRV}, R_{CDRV}, R_{ODRV}

Output: FC_{DRV}, updated

Method:

1. Let $ListUpdateObj$ be a list of objects (f_{del}) deleted from FC_{SRC}.
2. Let $ListSrcObjs$ and $ListObjs$ be a list of objects each.
3. Let f_{drv} be a subset of FC_{DRV} where f_{drv} is derived from f_{del}.
4. **While** ($ListUpdateObj \neq \emptyset$) **Do**
 5. Get f_{del} from $ListUpdateObj$.
 6. Get f_{drv} from $R_{ODRV}.drvObject$ of f_{del}.
 7. $ListSrcObjs \leftarrow R_{ODRV}.srcObjects$ of f_{drv}.
 8. $ListObjs \leftarrow \{ListSrcObjs\} - \{ListUpdateObj\}$.
 9. $ListUpdateObj \leftarrow \{ListUpdateObj\} - \{ListSrcObjs\}$.
10. **call** GeoAggretation($ListObjs$).
11. delete f_{drv}.
12. **End while**
Example: derivation of building block
Example: update of building block

Diagram showing the process involving Source DB, Modeling Tool, Directory DB, Update Rules, Update Propagation Manager, and Multi-Scale DB (Derived). Additionally, a screenshot of a user interface is shown, which includes options for selecting UPDATE Type (INSERT Data, DELETE Data, CHANGE Geometry, CHANGE Attribute) and importing an update file.
Conclusion

- Consistency between a source and its derived multi-scale databases during updates.
- Update Propagation Rules and Algorithms
 - for types of an update
 - insert,
 - delete,
 - change geometry,
 - change attribute)
 - and for types of a constraint
 - Attribute specified
 - attribute-value specified
 - Value specified
- Guarantee the integrity of a multi-scale database